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Abstract

A comparison between experimental and calculated mutual diffusion coeffi-

cients is presented for the methanol-n–hexane mixture, around the coexistence

line. For the experimental data, we used previous reported values, as well as

our own measurements performed with the Taylor dispersion technique between

288 and 313 K, for several concentrations. For theory, we used the mean-field

kinetic variational theory, i.e. the exact van der Waals theory. We reproduced

the experimental values, in a semiquantitative way. The mean-field theory uses

attractive interaction parameters which can be estimated when the binary system
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is classified according to the Scott and van Konynenburg scheme used for classi-

fying binary phase diagrams. As a by-product, our method can give a mean-field

theory spinodal curve prediction.
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1 INTRODUCTION

There are very few model mixtures for which theory can be handled almost without

approximations, giving explicit equations which relate the molecular parameters of the

binary mixture to the mutual diffusion coefficient, D11, (MDC). One of these is the van

der Waals binary model mixture. In previous reports,[1] we showed how to do that,

in the framework of the mean-field kinetic variational theory[2]. There, the MDC was

related to the classification scheme devised by Scott and van Konynenburg [3, 4] to

study fluid phase equilibria in binary systems in a systematic way. The link between

the MDC and fluid phase equilibria can be traced to the fact that MDC is equal

to the free energy curvature of the binary mixture, modulated by a compressibility

factor, and other factors related to the dynamics of two-particle collision. On the

other hand, the free energy curvature in a binary mixture is also responsible for the

specific characteristics of the equilibrium phase diagrams. Our final formula has a

practical advantage; the explicit dependence of the tail contribution is handled in such

a way that the structure of the equations is the same as that given in the revised Enskog

theory for hard-spheres (RET)[5, 6]. This make easier the task of developing numerical

solutions for calculating MDC’s. In particular, comparisons between the mean-field

kinetic variational theory and the RET are very simple within our framework, since we

only need to turn off the tail contributions to recover the MDC as given in the RET[6].

¿From the experimental point of view, the concentration dependence of the MDC

along the whole concentration range is not easily obtained, although there are many

well suited experimental techniques. However, understanding what determines the

shape of a D11 vs X2 (mole fraction of component 2) diagram on molecular terms is
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a different and difficult issue. They depend on many molecular parameters, apart of

those variables that determine the thermodynamic state: density, concentration, and

temperature. Here is where our method can be of help. In our model the D11 vs X2 can

be explicitly calculated, and we can understand how the different molecular parameters

affect such diagrams.

In particular, we have shown that our method predicts in a semiquantitative way the

concentration behavior of the MDC, in the whole concentration range, for homogeneous

binary mixtures of types I and II in the Scott and van Konynenburg scheme[1]. This

work is a step further in that direction. It is not quite common to find in the literature

predictions of MDC’s when a coexistence line is present, mainly because predictive

methods can not deal with phase transitions. The aim of this paper is to show the

capability of our method to predict the MDC of the system methanol-n–hexane around

the coexistence line. Of course, we are not trying to give the correct behavior of

D11 close to the consolute point, since mean-field theories give only classical critical

exponents. For the same token, our procedure can give a spinodal curve prediction.

This well defined spinodal curve, exists only in the mean-field case. Other methods

for describing non-equilibrium one-phase states do not yield a unique spinodal curve.

Nevertheless, it is useful to employ with caution, the mean-field description and the

sharp distinction between metastable and unstable states because it provides a simple

basis for characterizing limiting types of behavior.

The MDC of the methanol-n–hexane system has been measured by Clark and R.L.

Rowley[7] as a function of composition at five temperatures, with a temperature-jump

cell and a Gouy interferometer. They found the critical exponent. However, in their

study only two temperatures were evaluated below the consolute temperature. There-

fore, in order to make a comparison with theory, below the consolute temperature,

additional temperatures measurements were needed. We made some additional mea-

surements below the consolute point in both, the methanol rich region and the n-hexane

rich region.
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The outline of the paper is as follows. In Section II, we review the KVT I, i.e.

the van der Waalsian theory of transport processes, as well as the most important

features of the Scott and van Konynenburg scheme. In section III, we will present a

experimental section, and in section IV the results and a discussion.

2 Theory

2.1 Kinetic theory for the van der Waals mixture

More than a century ago, van der Waals developed a simple model which turned out to

be extremely fruitful for describing the main properties of realistic fluids. In modern

language, a rigorous formulation can be given by writing the molecular pair interaction

in the form V (r) = V S(r) + γV L(γr), where V S refers to the short-range reference

system, while V L is the long-range part of the potential, with range γ−1. If the prop-

erties of this model are analyzed in the limit of γ → 0, the van der Waals equation,

combined with the Maxwell equal-area construction, is obtained [8]. Besides, the van

der Waals theory has been developed to understand fluid phase equilibria in binary

mixtures, revealing a rich variety of behaviors accounting for most of the types of fluid

phase equilibria shown by actual mixtures, in a qualitative way [3, 4]. This model

has also been used to understand a long list of related problems such as the theory of

capillarity[9], nonuniform fluids,[10] interphase properties,[11] density fluctuations,[12]

mutual diffusion coefficients,[1] and thermal diffusion factors [13].

The kinetic variational theory, first obtained by Karkheck et al [2], is defined by a

set of coupled nonlinear mean-field kinetic. Those equations were derived for a system

of particles interacting through a pair potential consisting of a hard-sphere part plus a

smooth but, otherwise arbitrary attractive tail. The set of equations for the two single

particle distribution functions defined in a binary mixture, fi(r1,v1,t), (i = 1, 2), are

the following:
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[
∂
∂t

+ v1 ·
∂
∂r1

]
fi(r1,v1,t) = CRET (fi, fj)+

1
mi

2∑
j=1

∫∞
r12>σij

dr2 nj(r2, t)gHSij (r1,r2 | {nk}) ∂
∂r1
ϕtailij ·

∂
∂v1

fi(r1,v1,t)
(1)

where fi(r1,v1,t) is the average number of particles of component i, (with mass mi)

at the position r1, at the velocity v1, and at time t. ni =
∫
dv1fi(r1,v1,t). The

gHSij (r1,r2 | {nk})’s are the radial distribution functions of a binary hard-sphere mixture

and ϕtailij are the attractive tails. The collision term CRET (fi, fj) has exactly the form

of that which appears in the revised Enskog theory introduced by van Beijeren and

Ernst [5].

The Kac limit can be done in the mean field terms of equations (1) (σij → 0,

gij → 0). Then, kinetic equations for the fi can be obtained that embody the exact

thermodynamic description of a system interacting with a potential consisting of a

hard-sphere core and an infinitely weak long-range attraction, i.e., the van der Waals

interaction [2]. We shall call this theory KVT I.

Explicit expressions for the transport coefficients up to the Navier-Stokes level can

be directly obtained by expanding the heat, the momentum and the mass fluxes to

linear order in the gradients [1]. This is done by solving equations (1) in the Kac limit,

in the form fi = f
(0)
i [1+Φi] through the Chapman-Enskog development. Here, the f

(0)
i

are the local Maxwell distribution functions, and Φi ∼ O(∇). The thermal conductivity

and the viscosities are identical to those given in the RET [6]. The diffusion and thermal

diffusion coefficients exhibit an explicit dependence on the tail strength [1]. Following

the method of solution presented in Ref.[1], the independent mass flux relative to the

local center of mass velocity, in a binary system can be obtained substituting the

solution for the fi to the first order in the gradients into the expression:

Ji(r1, t) =
∫
dv1mi (v1−u) fi(r1,v1,t)

The final result is as follows:

J(1)
i = − ρi

2n2

2∑
j=1

(1− δjL)
[

2∑
k=1

d
(k)
i,0

(
Ekj −

Pj
PL
EkL

)]
∂nj
∂r (2)
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where the J
(1)
i are the macroscopic mass fluxes to the first order in the gradients, relative

to the local center of mass velocity, and Pi =
2∑
j=1

Eji, where Eji =
(
ni
kT

) (
∂µi
∂nj

)
T,nk 6=j

.

Those functions Pi should not be confused with the pressure.

In binary mixtures, there is only one independent diffusion coefficient. The phe-

nomenological expression for the mass flux Jphi (relative to the local center of mass

velocity, i = 1, 2), under the condition of no external forces, thermal and mechanical

equilibrium (∇T = ∇p = 0), is [14, 15]:

Jphi = −
2∑
j=1

(1− δLj)D
CM
ij ∇ρj (3)

In equations (3), ρj is the mass density of component j, T is the temperature, DCM
ij are

the mutual diffusion coefficients. Equations (3) have been writing in such a way that

all the gradients occurring therein are independent. The choice of the component L is

arbitrary and, although, it is not explicitly stated the DCM
ij depend upon the choice of

L.[14, 15]

Comparing equations (2) and (3) allows us to obtain the expression for the MDC

of the van der Waals binary mixture in the KVT I, as follows [1]:

DCM
11 =

ρ1

2m1n2

2∑
k=1

d
(1)
1,0

[
Ek1 −

(
P1

PL

)
EkL

]
(4)

In equations (4) the d(j)
1,0 are the coefficients that appear in the Sonine polynomial

expansion. They depend on the hard core part only. The tail contribution in equations

(4) comes through the chemical potential. In order to obtain practical results, one

restricts the number of Sonine polynomials in the expansion. We shall adopt here the

convention usually called the Nth Enskog approximation, i.e., only the first N Sonine

polynomials are taken into account. For details see Ref.[1]. Eq. 4 can be used for

calculating the MDC in binary mixtures, but if one is interested in comparisons with

experimental MDC’s of actual mixtures, we need to make a transformation. Since, the

measured MDC’s are measured relative to the mean volume velocity (Dv
11). Therefore,
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the relationship between them for binary mixtures is given by Dv
11 = (ρv2)DCM

11 , where

v2 is the partial specific volume of component 2. For details see Ref[1].

2.2 The Scott and van Konynenburg scheme

Studies of fluid phase equilibria have shown that there are continuous transitions be-

tween phase diagrams that exhibit gas-liquid, liquid-liquid, and gas-gas phase separa-

tions. Critical lines are often observed to change continuously from one type of the

phase separation to another. When the lines representing a single degree of freedom

(pure-component vapor pressure curves, three-phase lines, critical lines, etc.) are plot-

ted on P-T diagrams, the resulting graphs fall naturally into several different categories,

providing a convenient basis for classification of the fluid phase equilibria.

A very useful classification scheme has been devised some time ago by Scott and

van Konynenburg,[3] who used the van der Waals equation in a systematic way to

study the fluid phase equilibria of binary mixtures. They characterized the mixtures

by three dimensionless parameters:

ξ =
b22 − b11

b22 + b11
, ζ =

a22

b222
− a11

b211

a11

b211
+ a22

b222

, Λ =

a11

b211
− 2a12

b11b22
+ a22

b222

a11

b211
+ a22

b222

.

For ξ = 0, ζ is related to the difference in critical temperatures or pressures of the

pure components, and Λ is related to the molar heat of mixing. The van der Waals

constants am and bm for the mixture depend on mole fraction xi, as follows:

am =
∑

xixjaij, and bm =
∑

xixjbij

The constants a11 and a22 measure the attractive forces between pairs of molecules

of the pure components 1 and 2, respectively, and a12 is the corresponding parameter

for the interaction between molecules 1 and 2. The constants bij are the size parameters

for the pure components and for mixed pairs, respectively. Here, in agreement with

the Scott and van Konynenburg convention,[3] we have used the cross size parameter

as b12 = (b11 + b22)/2.
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On the basis of the selected parameters Λ and ζ, and on the P-T diagrams result-

ing from their calculations Scott and van Konynenburg grouped fluid phase equilibria

diagrams into five types, see Fig. 1. The diagrams were distinguished mainly by the

configuration of the critical lines and the three-phase lines on the P-T graphs. They

recognized a sixth type of diagram that occurs in some aqueous systems, but it was

not among those predicted by the van der Waals equation.

The usefulness of the above scheme relies in that it gives a qualitative description of

the properties of the liquid mixtures, and very rarely yields non-physical results. The

fluid phase of binary mixtures can be qualitatively discussed in terms of interaction

parameters and changes of thermodynamic properties near the critical points. There-

fore, a very natural extension of the work of Scott and van Konynenburg is to use this

scheme to describe the behavior of the MDC [1].

3 Experimental section

3.1 Instrument design and operation

The Taylor dispersion technique is based on the dispersion, by the joint action of

convection and molecular diffusion, of an injected binary-mixture pulse in a laminar

flowing stream of the same mixture at slightly different composition. Under adequate

conditions, the pulse concentration profile will eventually become normal, and the

center of gravity of the profile will move with the mean velocity of the laminar flow.

The theory for the development of an ideal equipment to measure MDC’s using this

method was revised by Alizadeh et al [16]. Furthermore, they presented detailed criteria

for the design of a practical instrument for measuring MDC’s. In the present paper,

we followed that work in order to design a measuring instrument, and the details of

our instrument were presented in Ref. [17].

Alizadeh et al. derived expressions for the volume-fixed MDC for an ideal instru-

ment, in terms of the first (t̄) and second (σ2) temporal moments of the distribution
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of the dispersed pulse. These expressions can be written as:

DV
1 =

(1 + 2ζ)

ζ

a2
0

48t̄id

where

ζ =
2σ2

id − t̄
2
id + {t̄4id + 4t̄2idσ

2
id}

1/2

{8t̄id − 4σ2
id}

+ δζ

Here, a0 is the capillary radius, and δζ is a correction due to the use of weaker

condition on the diffusion time. For details see Refs. [16] and [17].

In addition, Alizadeh et al [16]. derived a set of corrections for this ideal instrument

in order to include the deviations of a practical instrument. They found that the ideal

moments have to be corrected according to t̄ = t̄exp +
∑
δt̄i and σ2 = σ2

exp +
∑
δσ2

i ,

where t̄exp and σ2
exp denote the experimentally determined moments, and the δt̄i and

the δσ2
i are the corrections to be applied. For details see Refs. [16] and [17].

The values of t̄exp and σ2
exp were determined with a nonlinear fitting program of

the digitized values corresponding to the analogical signal of a differential refractome-

ter (Waters 402 ). This instrument was used to determine the temporal shape of the

injected pulse, in the region where it has a linear response to the concentration dif-

ference between the cells. Data acquisition was carried out using a data acquisition

board (PC-LabCard, Advantech, Co.) and a Printaform PC. The diffusion coefficient

obtained corresponds to the mole fraction concentration given by:

X1r = X1f + δX1,

where X1f is the flowing-stream composition, and δX1 is a small correction described

in Refs. [16] and [17].

4 Results and Discussion

In table 1, we present some results for the MDC’s of the methanol-n–hexane system,

at several temperatures and n–hexane mole fractions. All worked temperatures are
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below the consolute temperature. We followed the common practice of employing the

reproducibility of the results of a series of experiments, under nominally identical ex-

perimental conditions, as a measure of the precision of the observations. Hence, we

determined the values of t̄exp and σ2
exp and after considering the mentioned corrections,

we obtained a mean precision better than 1.5%. Taking into account several uncer-

tainties related to the cross-section area and the length of the diffusion tube, etc. the

overall accuracy of the reported diffusion coefficients is estimated to be of 2.5%. At

313.1 K, we also measured the MDC at infinite dilution to compare our measurements

with those reported values due to Clark and R.L. Rowley. The two values are within

the experimental error.

In order to make the numerical calculations, it is necessary to define the set of

parameter to be used in the mean-field theory. We have used the following set: m1, m2,

a22, b22, Λ, ξ, ζ, n, T , and X2. Once this set is given, the other interactions parameters

can be obtained [1]. With the theory developed above, the MDC was calculated for the

methanol-n–hexane binary mixture as a function of the concentration and temperature,

in the ninth Sonine approximation. When predictions for actual fluids are done, a

difficult problem is to obtain a reliable set of interaction parameters. Here, an initial

set of parameters was estimated as follows: each component was modeled as a hard-

sphere of diameter σ (L-J length), plus an attractive L-J tail. The aij’s and bij’s can

be estimated through standard formulas. The parameters Λ, ξ,and ζ were selected to

fall into type II phase diagrams of the Scott and van Konynenburg scheme. Thus, the

initial set of interacting parameters were modified for the 313 K mixture, in such a

way that one can obtain the experimental shape of the D11 vs X2 diagrams. In this

way, we arrived to a final set of interacting parameters. Since, our main interest was to

understand how the different of parameters affect the D11 vs X2 diagrams, we were not

interested in developing a procedure to obtain the best set of parameters that match

the experimental data completely. This is matter of a forthcoming work. In figure 2

presents a comparison between experimental data, coming from this work and from the

10



work of Clark and R.L. Rowley, and our calculations. The agreement is quite good and

semiquantitative, mainly in the hexane-rich region. Here, we used the same parameters

obtained for the 313 K mixture, except for the bij’s which were varied a little bit, since

the hard-core must be temperature dependent.

In figure 3, we present a 3D plot of our kinetic mean field predictions for the

methanol-n–hexane system for a small range of temperatures (283-318 K). Here, the

coexistence line was also included. Inside this coexistence line, we can find the geo-

metric locus where the MDC’s reach the value D11 = 0, the spinodal curve (curvature

of the free energy=0). Inside the spinodal curve, we set the D11 equal to zero to avoid

misunderstandings. But, as expected, our actual calculations gave negative values for

the MDC’s. This is in agreement with the point of view of a mean field theory where

diffusion inside the spinodal curve must help to nucleate a new phase, due to the lack

of thermodynamic instability of the system to remain as an homogeneous phase.
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Figure Captions

Figure 1. Classification of Scott and van Konynenburg. (a) Values of Λ and ζ

defining the main regions of similar phase diagram (modified form Ref. [3]. The shield

region is not shown. (b) Sketches of the pressure-temperature projections of the six

possible types of fluid phase equilibria exhibited by binary mixtures [ modified from

K.E. Gubbins, K.S. Shing, and W.B. Street. J. Phys. Chem. 87,5473 (1983)]. The

vapor-pressure curves of pure components are shown as solid curves. The gas-liquid-

liquid three-phase lines are shown as dash-dot, and the gas-liquid and liquid-liquid

critical lines are shown dashed. The U and L are upper and lower critical end points,

respectively.

Figure 2.Comparison between experimental and calculated MDC’s. Upper panel:

313.1 K, medium panel 303.1 K, and lower panel 293.1 K.

Figure 3. 3D plot of calculated MDC’s using the kinetic variational mean field

theory versus T and X2. In this plot we included the coexistence line (continuous

line). The spinodal curve can be seen as the first points where the MDC’s vanishes on

a isotherm.
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Table 1. Experimental Results

Temperature (K) n–Hexane mole fraction Dv
11 × 109 (m2/s)

283.15 5.7116×10−6 1.86

0.05159 1.32

0.90307 1.62

0.95026 1.96

0.9998 5.45

293.15 0.00003 2.30

0.05162 1.60

0.90269 1.57

0.9545 2.21

0.9971 5.71
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